Tango™ Lawn-and-Garden Project Block

Inspiration and Installation Guide

Create columns, seat walls, edging and more...

One block does it all and requires no cutting!

ANCHOR®
BUILD SOMETHING BEAUTIFUL
Enhance your outdoor entry and living spaces with this amazingly versatile lawn-and-garden project block. Let your imagination run free! With this unique T-shaped block you can create columns, seat and freestanding walls, battered or vertical retaining walls, planters, edging and more! For inspiration check out the ideas in this guide and view videos online. Then use the installation information included in this book to efficiently build your project.

Inspiration

Seat and Freestanding Walls
- Straight Seat Wall ... 4-5
- Straight Seat Wall Corner ... 6
- Straight Seat Wall Finished End 7
- Curved Seat Wall .. 8-9

Column ... 10-11

Retaining Walls
- Battered Wall ... 12
- Vertical Wall .. 13
- Planter .. 14

Edging ... 15

Estimating and Installation

Project Preparation and Tips 16-17
How to Split a Block in Half ... 18
How to Create Wedge Pieces .. 19
Seat/Freestanding Wall .. 20-22
Column ... 23
Retaining Wall ... 24-25
Edging ... 26-27

See how easily the Tango™ lawn-and-garden project block can transform your yard.

More information online at www.anchorwall.com

Installation Videos

Scan the QR code with your mobile device here to see the full play list or visit us at: http://bitly.com/TangoPlaylist
Product Overview

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate dimensions*</td>
<td>4”H x 12”W x 6”D</td>
</tr>
<tr>
<td>Minimum dimensions</td>
<td>3.93”H x 11.7”W x 5.54”D</td>
</tr>
<tr>
<td>Approximate weight*</td>
<td>16 lbs.</td>
</tr>
<tr>
<td>Coverage**</td>
<td>0.31 sq. ft.</td>
</tr>
<tr>
<td>System batter (battered wall)</td>
<td>10.6°</td>
</tr>
<tr>
<td>System batter (vertical wall)</td>
<td>0°</td>
</tr>
<tr>
<td>Minimum outside radius†</td>
<td>7’</td>
</tr>
<tr>
<td>Minimum inside radius†</td>
<td>4’</td>
</tr>
</tbody>
</table>
| Maximum retaining gravity wall height† | Battered: 2’
 Vertical: 1’4” |
| Maximum seat wall height† | Curved: 2’
 Straight: 2’ |
| Maximum column height† | 4’ |

* Actual dimensions and weights may vary from these approximate values due to variations in manufacturing processes. The minimum dimensions are smallest possible due to these variations.

** Based on front face of block.

† Minimum radius without cutting.

‡ Maximum heights that can be safely built without geosynthetic reinforcement, including the buried course, but excluding the cap. Maximum gravity wall heights assume no slope below or above the wall; no surcharge loads (e.g., driveway, parking pad, pool); and all replaced soil is well compacted.
The design of the Tango™ project block allows for nested installation to surround a backyard patio, enhance a front yard courtyard, and provide seating. For nested installation example, see non-capped wall on page 5.

Straight Seat Wall

Design Parameters

- Wall depth: 9” without cap
- Maximum height, including buried course but excluding the cap: 2’
- Recommended seating height: 1’7” to 1’11”

For estimating and installation see pages 20-22.
Cap Ideas

- ShortCut® caps (shown above)
- 16” x 16” patio stones (shown on page 4)
- Add a row of pavers between wall blocks and caps for color and/or texture accent (shown above)
- Cap and accent options vary by market

Design Tip

The angled tail provides the strength and stability of a dove-tailed joint!
Seat Wall Corner

Projects with a 90-degree corner are a breeze. Ideal for enclosing a patio area or defining a space.

Design Parameters
- Wall depth: 9” without cap
- Maximum height, including buried course but excluding the cap: 2’
- Recommended seating height: 1’7” to 1’11”

Design Tip
One block does it all — just split and place.

See page 18 for instructions.
Seat Wall Finished End

Show off the clean lines at the end of a seat or freestanding wall, or abut next to a structure, such as a house or a column. This is perfect for smaller spaces.

Cap Ideas
- ShortCut® caps (shown on page 6)
- 16” x 16” patio stones (shown above)
- Add texture or color contrast with pavers or patio stones (see photos on page 8)
- Cap and accent options vary by market

Design Tip
Split the block in half to create wall end.

See page 18 for instructions.
Curved Seat Wall

Some landscapes lend themselves to a curved seat wall. This more sophisticated tail-to-tail design and installation project creates a softened, intimate space. Add a column or two for visual impact. For tail-to-tail installation example, see non-capped wall on page 9.

Design Parameters

- Wall depth: 1' without cap
- Maximum height, including buried course but excluding the cap: 2'
- Recommended seating height: 1’7” to 1’11”

For estimating and installation see pages 20-22.

Design Tip

Curved seat walls can be abutted next to a structure, such as a house, or a standalone element flanked by column(s).
Cap Ideas

- Select cap to cover seat area with an overhang for the best aesthetics and most comfortable seating
- Match or contrast the seat wall’s color and texture by adding a row of pavers between wall and caps
- Cap and accent options vary by market

Design Tip

Remove the tail to fill void for wall end.

See page 19 for instructions.
Columns

Columns make statements and add visual interest besides being functional. Build columns in just minutes to enhance an entryway or showcase potted plants; add ambience by including light fixtures.

Design Parameters

- Column footprint: 1’3” x 1’3” without cap
- Maximum height, including buried course but excluding the cap: 4’
- Hollow core provides space for wiring electricity or mounting post: approximately 3” x 3”

For estimating and installation see page 23.
Textured end is exposed on column exterior. Smooth end is concealed inside the column.

Design Tip
Be sure that the face and textured end of each block face outward as shown here.

Column Cap Ideas
- Layer 16 in. x 16 in. large, 12 in. x 12 in. small, 16 in. x 16 in. large patio stones (A)
- 16 in. x 16 in. Large patio stone (B)
- Layer 12 in. x 12 in. small, 16 in. x 16 in. large patio stones (C)

Other cap ideas (not shown):
- Poured concrete top
- Glass block
- Granite

A

B

C
Battered Retaining Wall

A wall built to retain soil is known as a retaining wall. A battered wall has the blocks set back on each course to improve the wall stability.

Design Parameters
- Maximum battered height, including buried course but excluding the cap: 2'

For cross-section details, estimating and installation see pages 24-25.

Cap Ideas
- Anchor™ small cap (shown above)
- Anchor™ cap (shown below)
- Match or contrast the wall’s color and texture
- Cap and accent options vary by market
Vertical Retaining Wall

A wall built to retain soil is known as a retaining wall. A vertical wall has the blocks stacked vertically on each course to maximize use of space for lawn, garden or other plantings.

Design Parameters

- Maximum vertical height, including buried course but excluding the cap: 1'4".

For estimating and installation, see pages 24-25.

Cap Ideas

- Pavers; fill gaps with mortar (A)
- Anchor™ wall cap (B)
- Anchor™ small cap (shown below)
- Match or contrast the wall’s color and texture
- Cap and accent options vary by market
Planter

Small vertical retaining wall projects are ideal for herb, floral or vegetable gardens.

Design Parameters

- Maximum vertical height, including buried course but excluding the cap: 1’4”

For cross-section details, estimating and installation see pages 24-25.

Cap Ideas

- Anchor™ wall cap (shown above)
- ShortCut® cap (shown below)
- Match or contrast the wall’s color and texture
- Cap and accent options vary by market
Edging

This versatile block can also be used in multiple ways to create garden and project edging. Edgers provide landscape detail and keep mulch, soil and weeds from entering your garden or landscape area.

For estimating, installation and design options, see pages 26-27.
Project Preparation and Tips

Advance planning and careful layout at the job site help ensure successful projects. Read all instructions prior to installation.

1. Have utilities location(s) marked.
2. Develop a plan; confirm lot lines, project location and area.
3. Stake project location with string line or garden hose.

Tips

- Score line does not indicate top or bottom of project block. See example on next page.
- Texture irregularities are a characteristic of this block. Flip blocks as needed during installation to minimize gaps between blocks, being mindful of whether your project has exposed textured ends (e.g., columns, corners).
- Wall projects require a running bond pattern. See example on page 17.
- Use an exterior-grade concrete adhesive. Apply a \(\frac{1}{4} \) -inch bead (string) of glue on the project block prior to capping, as shown on page 17.
- Multiple cap and accent options are available for each project.

Cap Estimating

Select wall cap product; then calculate number of caps needed for project.

\[
\text{estimated } \# \text{ of caps} = \frac{\text{wall length in inches}}{\text{linear coverage of cap in inches}} \times 1.05^* \\
\text{minimum } \# \text{ of caps} = \frac{\text{estimated } \# \text{ of caps}}{\text{2 different lengths}}
\]

* It is recommended that you purchase 5 percent more product than estimated to account for cutting and breakage. Add an extra 10 percent for curved walls.

** Average if two different lengths.

Tools and Materials Needed

<table>
<thead>
<tr>
<th>Tools</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Glasses</td>
<td>Base Material</td>
</tr>
<tr>
<td>Gloves</td>
<td>Exterior-Grade Concrete Adhesive</td>
</tr>
<tr>
<td>Stakes</td>
<td>Tamper</td>
</tr>
<tr>
<td>String</td>
<td>Shovel</td>
</tr>
<tr>
<td>Trowel</td>
<td>Rake</td>
</tr>
<tr>
<td>Level</td>
<td>Post Hole Digger</td>
</tr>
<tr>
<td>Metal Chisel</td>
<td>Garden Hose</td>
</tr>
<tr>
<td>Framing Hammer</td>
<td>Post Hole Digger</td>
</tr>
<tr>
<td>Rubber Mallet</td>
<td>Drainage Aggregate (retaining walls only)</td>
</tr>
</tbody>
</table>
Project Preparation and Tips (continued)

Glue Placement

Apply along middle of block head for:
- Column (all courses)
- Seat/freestanding walls (top two courses)
- Vertical retaining walls (all courses)
- Capping

Helpful tip –
Score line does not indicate top or bottom

Apply along back of block head for:
- Battered retaining walls (all courses)

Calculate exterior-grade concrete adhesive needed.

\[
\text{oz. of adhesive} = \left(\frac{\text{wall length (in.)}}{12} \times \frac{\text{length of courses to glue (lin. ft.)}}{\text{# of courses to glue}} \right) \times 3 \div 10
\]

minimum # of 10 oz. exterior-grade concrete adhesive tubes

Running Bond Pattern

Stagger block alignment as shown
How to Split a Block in Half

Just four simple steps split a Tango™ lawn-and-garden project block into two L-shaped pieces which are used for corners and ends. Following these steps will result in cleaner splits.

1. Place the block on the grass or soft surface with the score line facing up. With a metal chisel and framing hammer, lightly tap starting from the face of the block to extend the score line. Continue tapping along the score line to the tail.

2. Stand block on its face and again lightly tap, creating a score line on the end of the block.

3. Flip the block over and continue lightly tapping, creating another centered score line from the tail to the face of the block.

4. Repeat process with solid force as needed until the block splits in half.

Design Tip
If needed, chisel away texture to create a tighter fit.
How to Create Wedge Pieces

Option 1. Use the tail to create a wedge piece for ends of curved walls or for one of the edger options.

1. Place the block on the grass or soft surface.
2. With a metal chisel and framing hammer, lightly tap along the neck.
3. Flip the block over and continue lightly tapping, creating a score line all the way around the four sides of the block.
4. Repeat process with solid force as needed until the block splits in two.

Option 2. Use L-shaped pieces (see page 18) and split at the neck to create wedge pieces.
Seat/Freestanding Wall Estimating

Use the quick reference chart or calculate number of blocks needed per formula below. Note: Quick reference chart is rounded up to account for additional pieces for splitting.

Quick Reference Chart Number of Blocks Needed

<table>
<thead>
<tr>
<th>Number of Courses (Height)</th>
<th>Wall Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5'</td>
</tr>
<tr>
<td>1 Course/base course (4")</td>
<td>12</td>
</tr>
<tr>
<td>2 Courses (8")</td>
<td>22</td>
</tr>
<tr>
<td>3 Courses (12")</td>
<td>32</td>
</tr>
<tr>
<td>4 Courses (16")</td>
<td>42</td>
</tr>
<tr>
<td>5 Courses (20")</td>
<td>54</td>
</tr>
<tr>
<td>6 Courses (24")</td>
<td>64</td>
</tr>
</tbody>
</table>

Calculate number of blocks needed for project. If building on top of existing paver or concrete base, exclude adding number of blocks needed for buried base course.

- calculate exposed area of wall
 \[
 \text{area of both sides of wall (sq. in.)} \times \frac{\text{wall height (in.)}}{2} = \text{area of block face}
 \]

- number of blocks needed for exposed wall
 \[
 \frac{\text{exposed wall length (in.)} \times \text{exposed wall height (in.)}}{\text{area of block face}}
 \]

- calculate number of blocks needed for base course
 \[
 \text{block length (in.)} \times 1.05^* \text{X} 11.7 \times 2 = \text{estimated # of blocks}
 \]

* It is recommended that you purchase 5 percent more product than estimated to account for splitting and breakage.

Calculate base material (paver base or 1/4-inch minus [with fines] aggregate) needed for project. Base material is not needed if building on top of existing paver or concrete base. Calculations are based on an average of straight and curved walls.

- calculate average volume of base material
 \[
 \frac{\text{volume of base (cu. in.)}}{\text{wall length (in.)}} \times 74 = \text{compensation for compaction}
 \]

- total cu. ft. of base material
 \[
 \frac{\text{cu. in. of base material}}{1,728} = \text{total cu. ft. of base material}
 \]

For cap estimating see page 16.
Seat/Freestanding Wall Installation

Straight Wall Nested Layout

Reverse order of blocks in the second course to stagger them for a running bond.

Subsequent courses alternate A,B,A,B.

Straight Wall Nested Corner Layout

Subsequent courses alternate A,B,A,B.

Always start subsequent courses at the end opposite of a column/structure.

Curved Wall Tail-to-tail Layout

Subsequent courses alternate A,B,A,B.

Always start subsequent courses at the end opposite of a column/structure.
Seat/Freestanding Wall Installation (continued)

If project will be on top of existing paver or concrete base, consider the weight that is being added and adequacy of existing base to bear the load. Proceed to step 3a or 3b for first course layout.

1. **Stake out wall and create trench** – Mark location of the wall from the back of blocks. Dig a trench for the leveling pad.

a. **Straight wall trench** – 17 inches wide x 8 inches deep.

b. **Curved wall trench** – 20 inches wide x 8 inches deep.

2. **Leveling pad** – Add a 2-inch layer of base material in the bottom of the trench; rake out and firmly compact. Repeat as needed for finished compacted base depth of 4 inches. Use a carpenter’s level to level base material along the trench; check the level every few feet.

3. **First/Base course** – For buried course installation, place the face of the block about 4 inches from trench side. Level the first block, front-to-back and side-to-side; lay subsequent blocks in the same manner.

a. **Straight wall nested layout** – For layout drawings see page 21. With textured surfaces facing out place a full block and a split L-shaped piece at project’s end as shown in course A. Level block front-to-back and side-to-side. Lay the next block by rotating 180-degrees and interlock tails with the first block. Continue to level block and repeat to the end of the course.

 Important tip for 90-degree corners – Make sure textured surfaces are facing out and continue to build straight wall course.

 b. **Curved wall tail-to-tail layout** – For layout drawings see page 21. Starting the wall next to structure such as a column, build the outside radius, first with textured surfaces facing out. Level block front-to-back and side-to-side. End row by placing wedge piece before starting inside radius. Proceed with inside radius, placing blocks with sides and tails touching the outside radius row. Fill any open spaces at the wall end closest to structure with pieces split to fit. Glue all split pieces in place with exterior-grade concrete adhesive.

 Important tip for curved walls – If including column(s) in design, build one column first, then wall, and end with second column if desired.

4. **Subsequent courses** – Clean any debris off the previous course. Place the blocks as shown in layouts, alternating courses until project’s height is reached. Glue the top two courses with an exterior-grade concrete adhesive as shown on page 17. Backfill trench with on-site soil and compact.

 Important tip for curved walls – Begin all subsequent courses at the wall end as shown on course B.

5. **Capping the wall** – Choose a cap option for your wall. Clean debris off the top course. Use an exterior-grade concrete adhesive on block to secure caps in place. Have score line facing down on the top course if using pavers as accent detail.
Column Estimating and Installation

If project will be on top of existing paver or concrete base, consider the weight that is being added and adequacy of existing base to bear the load. Proceed to step 3 for first course layout.

1. **Stake out area and create trench** – Dig trench 23 inches wide x 23 inches long x 8 inches deep for the leveling pad.

2. **Leveling pad** – Add a 2-inch layer of base material in the bottom of the trench; rake out and firmly compact. Repeat as needed for finished compacted base depth of 4 inches. Use a carpenter’s level to level base material along the trench; check the level every few feet.

3. **Base course** – Build course A, placing first block with the face and textured end facing out and each positioned 4 inches away from two adjoining sides of the trench. Rotate next block 90-degrees and interlock with first block. Continue with blocks to complete the course.

4. **Subsequent courses** – Check to make sure all textured sides are facing out. Clean any debris off the blocks and glue all courses with exterior-grade concrete adhesive as shown on page 17. Alternate courses B,A,B,A to maintain staggered bond until project’s height is reached.

5. **Capping column** – Choose a cap option for your column. Clean debris off the top course. Use an exterior-grade concrete adhesive on block to secure caps in place. If using pavers as accent detail, have score line facing down on the top course. If layering caps, similarly secure each one in place with adhesive. Cap(s) should overhang column by one to three inches.

Quick Reference Chart

<table>
<thead>
<tr>
<th>Number of Courses (Height)</th>
<th>Number of Blocks Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Course/base course (4”)</td>
<td>4</td>
</tr>
<tr>
<td>2 Courses (8”)</td>
<td>8</td>
</tr>
<tr>
<td>3 Courses (1’)</td>
<td>12</td>
</tr>
<tr>
<td>4 Courses (1’4”)</td>
<td>16</td>
</tr>
<tr>
<td>5 Courses (1’8”)</td>
<td>20</td>
</tr>
<tr>
<td>6 Courses (2’)</td>
<td>24</td>
</tr>
<tr>
<td>7 Courses (2’4”)</td>
<td>28</td>
</tr>
<tr>
<td>8 Courses (2’8”)</td>
<td>32</td>
</tr>
<tr>
<td>9 Courses (3’)</td>
<td>36</td>
</tr>
<tr>
<td>10 Courses (3’4”)</td>
<td>40</td>
</tr>
<tr>
<td>11 Courses (3’8”)</td>
<td>44</td>
</tr>
<tr>
<td>12 Courses (4’)</td>
<td>48</td>
</tr>
</tbody>
</table>

*Including base course but excluding the cap

If installing column project in ground instead of on existing patio, base material is required for buried course:

- Calculate volume of base material

 \[
 \text{volume of base (cu. in.)} \times \ \frac{2,116}{\text{num. of columns}} = \ \text{trench base volume (cu. in.)}
 \]

- Compensation for compaction

 \[
 \text{compensation for compaction} = 1,25
 \]

- Total cu. ft. of base material

 \[
 \frac{\text{cu. in. of base material}}{1,728} = \text{total cu. ft. of base material}
 \]
Retaining Wall Estimating and Cross-Sections

Use the quick reference chart or calculate number of blocks needed per formula on page 25. Note: Quick reference chart is rounded up to the nearest block.

<table>
<thead>
<tr>
<th>Number of Courses (Height)</th>
<th>5'</th>
<th>10'</th>
<th>15'</th>
<th>20'</th>
<th>25'</th>
<th>30'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Course/base course (4"")</td>
<td>6</td>
<td>11</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>2 Courses (8")</td>
<td>11</td>
<td>21</td>
<td>32</td>
<td>42</td>
<td>53</td>
<td>63</td>
</tr>
<tr>
<td>3 Courses (12")</td>
<td>16</td>
<td>32</td>
<td>48</td>
<td>63</td>
<td>79</td>
<td>95</td>
</tr>
<tr>
<td>4 Courses (16")</td>
<td>21</td>
<td>42</td>
<td>63</td>
<td>84</td>
<td>105</td>
<td>126</td>
</tr>
<tr>
<td>5 Courses (20")*</td>
<td>27</td>
<td>53</td>
<td>79</td>
<td>105</td>
<td>132</td>
<td>158</td>
</tr>
<tr>
<td>6 Courses (24")*</td>
<td>32</td>
<td>63</td>
<td>95</td>
<td>126</td>
<td>158</td>
<td>189</td>
</tr>
</tbody>
</table>

*Battered wall only

Cross-section of a Vertical Wall

Cross-section of a Battered Wall
Retaining Wall Installation

1. **Stake out wall and create trench** – Mark location of the wall from the back of the block. Dig a trench 12 inches wide x 8 inches deep x ___ (length of wall) for the leveling pad.

2. **Leveling pad** – Add a 2-inch layer of base material in the bottom of the trench; rake out and firmly compact. Repeat as needed for finished compacted base depth of 4 inches. Use a carpenter’s level to level base material along the trench; check the level every few feet.

3. **Base course** – For buried course installation place the face of the block about 4 inches from trench side and centered. Level the first block, front-to-back and side-to-side; lay subsequent blocks in the same manner. Backfill behind base course with base material.

 a. **Straight retaining wall** – Place blocks next to each other using a string line along the back edge to check for proper alignment.

 b. **Curved retaining wall** – Begin by driving stake into the ground at the desired center of the curve. Attach a string, rotate it in a circle around the stake, and mark the radius in the soil. Align each block face with the outside radius and level front-to-back and side-to-side.

4. **Subsequent courses** – Stagger blocks to maintain running bond. Split blocks as needed to fit desired length of wall. After each subsequent course, backfill with drainage aggregate and tamp before installing additional courses. The last course of blocks can be backfilled with topsoil to allow for plants or sod. Fill trench in front of wall with on-site soil and compact. Clean any debris off the blocks and glue all courses with an exterior-grade concrete adhesive as shown on page 17.

 Important tip for vertical walls – Place block with face aligned vertically as shown on page 24.

 Important tip for battered walls – Set block with the front face of the block back by 3/4 inch as shown on page 24.

5. **Capping the wall** – Choose a cap option. Use an exterior-grade concrete adhesive on block to secure caps in place.

Calculate the number of blocks needed for project.

![Calculate the number of blocks needed for project.](image)

Calculate base material (paver base or 3/4-inch minus [with fines] aggregate) needed for project.

![Calculate base material needed for project.](image)

Calculate drainage aggregate (3/4-inch angular/crushed free-draining aggregate) needed for project.

![Calculate drainage aggregate needed for project.](image)
Edging Estimating and Installation

Basic Installation Prep for All Design Options

1. **Excavation** – Begin by laying out the project using stakes and string line or a garden hose (great for curves). Dig a trench 6 inches wide x 4 inches deep (3 inches deep for Option 3).

 ![Excavation](image)

2. **Leveling pad** – Level bottom of the trench. Place 1-inch of base material in the bottom of the trench and firmly compact.

 ![Leveling pad](image)

 Helpful tip – Use 1 cubic feet of base material for every 25 feet of edging.

Edger Design Option 1

3. Using a post hole digger or hand trowel is recommended. Position blocks centered and end-to-end in the trench by creating a hole 4 inches wide x 3 inches deep x 6 inches long every 12 inches to bury tail into base. Using a rubber mallet, tamp the edger firmly into place. Use a level to ensure edger units are uniformly level. Continue to place the units until the desired length of the project is reached.

4. Split block as needed to fit desired length of edging.

5. Finish project by firmly packing excavated material along sides of the edger units.

Edger Design Option 2

3. Position a block textured face up, then place a block textured face down, both centered in trench. Using a rubber mallet, tamp the edgers firmly into place. Use a level to ensure edger units are uniformly level. Continue repeating this pattern to complete project.

4. Split block as needed to fit desired length of edging.

5. Finish project by firmly packing excavated material along sides of the edger units.

Edger Design Option 3

3. Split each block to create a wedge piece (see page 19).

4. Position the long piece of block textured face up, then place the tail piece next to it, textured surface up. Using a rubber mallet, tamp the edgers firmly into place. Use a level to ensure edger units are uniformly level. Repeat pattern to complete project.

5. Finish project by firmly packing excavated material along sides of the edger units.
Calculate base material (paver base or \(\frac{3}{4}\)-inch minus [with fines] aggregate) needed for project.

\[
\text{calculate the volume of base material} \quad \text{length of project (in.)} \times 6 \times \text{trench width} \times \text{base depth (sq. in.)} \\
\text{volume of base material (cu. in.)} \times 1.25 \quad \text{compensation for compaction} \\
\text{cu. in. of base material} \div 1,728 \quad \text{compensation for compaction} \\
\text{total cu. ft. of base material}
\]

Calculate number of edgers needed for project.

\[
\text{calculate project length} \quad \text{length of project (in.)} \div \text{project length (in.)} \div 12 \quad \text{approximate edger coverage (in.)} \\
\text{minimum # of edgers} \quad \text{estimated # of edgers} \times 1.05^* \\
\text{minimum # of edgers*} \quad \text{estimated # of edgers} \\
\text{minimum # of edgers*} \quad \text{estimated # of edgers} \\
\text{minimum # of edgers*} \quad \text{estimated # of edgers} \\
\text{minimum # of edgers*} \quad \text{minimum # of edgers*}
\]

*It is recommended that you purchase 5 percent more product than estimated to account for splitting and breakage.